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1. Introduction

The maximal supersymmetric N = 4 super Yang-Mills theory plays a special role in the

context of AdS/CFT duality [1]. At the perturbative level, it is a finite superconformal

theory with non trivial quantum properties of its gauge invariant composite operators. The

renormalization mixing can be seen as a dynamical system in the space of local composite

operators where the evolution time is the renormalization scale as first discovered in the

QCD context (see [2] for a review). Remarkably, this system is integrable and can be

related to a discrete universal psu(2, 2|4) invariant superspin chain [3].

It is commonly accepted that integrability survives at all loops. This important fact

emerges from the Bethe Ansatz treatment of simple small rank subsectors. For the full

theory, long-range (asymptotic) Bethe equations have been proposed [4, 5]. They pass

several consistency checks related to the integrability structure of the gauge theory, but

also to the assumed duality with AdS5 × S5 superstring. The full Bethe equations have a

rather intriguing loop-deformed structure still to be completely understood from the point

of view of perturbative deformations of integrable systems [6].
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Of course, with a very pragmatical attitude, integrability of N = 4 SYM can be

exploited as a tool for the calculation of multi-loop anomalous dimensions. This is not as

good as it could appear since solutions of Bethe equations cannot be found in analytical

form, except for very special states. However, it turns out that certain operators, typically

singlets of all discrete symmetries, enjoy a very remarkable property. Their anomalous

dimension is obtained as a weak-coupling perturbative series with rational coefficients

(see [7] for related comments).

This fact is not a minor technical point. Indeed, one can try to resum these series

in closed form in terms of the characteristic combinations of harmonic sums which are a

common result of multi-loop quantum field theory calculations. The connection between

Bethe equations and harmonic sums remains far from being understood, but is nevertheless

a powerful heuristic tool to obtain anomalous dimensions for finite spin operators. Notice

also that closed spin-dependent expressions are of paramount importance since they open

the way to BFKL physics analyses [8] as well as subtle QCD-like hidden properties like

reciprocity relations [9 – 11].

As an important example, one can consider twist-2 operators in the bosonic sl(2) sub-

sector of N = 4 SYM. For these operators, Kotikov, Lipatov, Onishchenko and Velizhanin

(KLOV) formulated a maximum transcendentality principle and predicted the three loop

finite spin anomalous dimension from the QCD result [12, 13]. Later, those formulas have

been checked against the rational predictions from Bethe Ansatz equations with full agree-

ment, although without a direct derivation [14].

A genuine new prediction has been recently obtained by considering similar twist-3

bosonic operators. The four loop finite spin anomalous dimension has been predicted by

resorting to a weakly generalized KLOV principle [15, 8]. Later, the same approach has

been applied to twist-3 gaugino operators and the identification of rational anomalous

dimensions has allowed to conjecture a relation with the twist-2 case proved rigorously at

the three loop level [16].

The twist-3 case is quite interesting since operators built with scalars, gauginos or

gauge fields are not related by supersymmetry. This has to be compared with the twist-2

case where all channels are in a single supermultiplet [17].

In this paper, we continue the analysis of twist-3 operators by studying a purely glu-

onic sector. After a review of relevant known results, we illustrate how the psu(2, 2|4)
supermultiplet structure in twist-3 can be exploited to identify the correct superconformal

primary describing the gauge sector. At one-loop, this sector is described by the XXX−3/2

closed spin chain. At higher orders, we solve perturbatively the long range Bethe equa-

tions. Applying the above strategy, we resum in closed form the anomalous dimensions

up to three loops. To this aim, we propose a weak KLOV principle with subdominant

transcendentality contributions.

Our three loop result reproduces in the large spin N limit the universal twist-independent

cusp anomalous dimension, a.k.a scaling function. Moreover, the various subleading cor-

rections in an expansions at large N are shown to obey generalized Moch-Vermaseren-Vogt

relations [18, 19] as suggested by general QCD arguments in [9 – 11].
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2. Quasi-partonic operators and planar integrability

In this section, we briefly recall the definition of a special class of QCD composite opera-

tors which are quite relevant in phenomenological applications, the so-called quasi-partonic

operators [2]. They are defined with no special reference to the possible underlying super-

symmetry. As we shall discuss, quasi-partonic operators with maximal helicity have quite

special properties from the point of view of both integrability and renormalization mixing.

For this reason, they are a convenient bridge between the QCD language and that of the

integrable N = 4 SYM theory and will be the starting point of our analysis in the next

sections.

We introduce light-cone coordinates by choosing two independent light-like 4-vectors

nµ and nµ with

n2 = n2 = 0, n · n = 1, (2.1)

and decompose a generic 4-vector V µ according to the relations

V µ = V− nµ + V+ nµ + V µ
⊥ , (V⊥ · n = V⊥ · n = 0). (2.2)

V+ = V · n, V− = V · n, V µ
⊥ = gµν

⊥⊥ Vν , (2.3)

g⊥µν = gµν − nµ nν − nµ nν . (2.4)

A convenient choice is as usual nµ = (1, 0, 0, 1), nµ = (1, 0, 0,−1).

The relevance of light-cone is that in high energy QCD applications, one is often lead

to consider operators with quark fields along the “−” ray and gauge links assuring gauge

invariance. A typical 2-quark operator is then

O(z1, z2) = ψ(z1 n) /n P e
i g

R z1
z2

dℓ A+(u ℓ)
ψ(z2 n). (2.5)

Understanding the gauge links, these non-local operators can be expanded in local operators

with increasing spin (Dµ is the covariant derivative)

O(−z, z) =
∑

N

(2 z)N

N !
ψ(0) /n

↔

DN
+ ψ(0), D+ = D · n. (2.6)

In the conformal limit, the “−” ray is left invariant by a SL(2) collinear subgroup of

the conformal group, generated by translations and dilatations along the ray, and rotations

in the (+,−) plane. SL(2) primary fields have definite scaling dimension d and collinear

spin s defined by (here D and Σµν are the dilatation and Lorentz spin generators)

D Φ = dΦ, Σ+− Φ = s Φ. (2.7)

The so-called good fields are special (SL(2) primary) components of the elementary scalars

ϕ (in supersymmetric theories), Weyl fermions λα and field strength Fµν with minimal

collinear twist t = d − s = 1. They can be shown to be ϕ, λ+ (and the conjugate)

and F+µ
⊥. Composite operators built with good fields are called quasi-partonic since they

correspond to physical degrees of freedom as is clear in the light cone gauge. For quasi-

partonic operators, the number of good fields equals the twist. At one-loop, quasi-partonic

operators with fixed twist are a closed set under renormalization mixing.
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In the light-cone gauge, A · n = A+ = 0, the gauge links are absent and the physical

fields are ϕ, λ+ and Aµ
⊥. Notice that the transverse components of the gauge field are

non-locally related to good fields, for instance

A =
1√
2
(Ax + iAy) =

1√
2
∂−1

+ (F+x − i F̃+x) =
i√
2
∂−1

+ (F+y − i F̃+y). (2.8)

Quasi-partonic operators are a convenient starting point to discuss the emergence of

integrability structures in QCD, as well as in theories with N > 0 supersymmetries. In

the planar (multicolor) limit, the one-loop anomalous dimensions of various quasi-partonic

QCD operators are computed by the spectrum of the integrable XXX spin chain with sites

transforming in negative spin (infinite dimensional) sl(2) representations. Three quarks

baryon operators with maximal helicity 3/2 and leading twist-3 have anomalous dimen-

sions associated with the closed XXX−1 chain [20, 21]. Twist-3 quark-gluon chiral-odd

operators lead to more complicated but still integrable open XXX chains [22 – 25]. Twist-

3 maximal helicity gluon operators have anomalous dimensions described by the closed

XXX− 3

2

chain [26]. The integrability of three gaugino operators survives at two loops in

N = 1, 2, 4 extended theories [27]. The same is true for three scalar operators studied at

N = 2, 4 in [28]. In this case, the relevant one-loop integrable spin chain is XXX−1/2.

In the maximally supersymmetric N = 4 theory, the integrability properties of vari-

ous subsectors (including quasi-partonic operators) are deeply intertwined with the large

amount of supersymmetry. In general, the psu(2, 2|4) supermultiplet structure connects

twist sectors and channels which are completely unrelated in QCD. In the next section, we

shall review what is known about the anomalous dimensions of twist-2 and -3 quasi-partonic

operators with maximal helicity in N = 4 at one-loop and beyond. This preliminary dis-

cussion will set the stage for the investigation of a still unexplored (nice) piece of the theory

which are purely twist-3 gluonic operators at more than one-loop.

3. A variety of one and higher loop anomalous dimensions

In the notation of [29], let us consider a single-trace maximal helicity quasi-partonic oper-

ator

ON,L(0) =
∑

n1+···nL=N

an1,...nL
Tr

{
Dn1

+ X(0) · · ·DnL
+ X(0)

}
, ni ∈ N, (3.1)

where X(0) is a physical component of quantum fields with definite helicity in the under-

lying gauge theory (ϕ, λ,A), and D+ is the light-cone projected covariant derivative. The

coefficients {an} are such that ON,L is a scaling field, eigenvector of the dilatation operator.

The total Lorentz spin is N = n1 + · · ·nL. The number of elementary fields equals the

twist L, i.e. the classical dimension minus the Lorentz spin.

At one-loop, the anomalous dimensions of the above operators can be found from

the spectrum of a noncompact sl(2) spin chain with L sites. The elementary spin of the

chain is related to the conformal spin s of X which is s = 1
2 , 1, 3

2 when X is a scalar,

gaugino, or gauge field respectively. The one-loop ground state energy, associated with the
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lowest anomalous dimension, can be found by solving the Baxter equation [30]. For self-

consistency, we recall the well-known basic equations. One introduces the Baxter function

Q(u) satisfying the second-order finite-difference equation

(u + i s)L Q(u + i) + (u − i s)L Q(u − i) = tL(u)Q(u), (3.2)

where tL(u) is a polynomial in u of degree L with coefficients given by conserved charges qi

tL(u) = 2uL + q2 uL−2 + . . . + qL. (3.3)

The lowest integral of motion is

q2 = −(N + Ls)(N + Ls − 1) + Ls (s − 1), (3.4)

with N = 0, 1, . . .. If the Baxter function is assumed to be a polynomial of degree N

Q(u) ∼
N∏

k=1

(u − uk), (3.5)

one immediately checks that the Baxter equation implies the Bethe equations for the

XXX−s chain
(

uk + i s

uk − i s

)L

=

N∏

j=1
j 6=k

uk − uj − i

uk − uj + i
k = 1, . . . , N. (3.6)

Solving the Baxter equation supplemented by the polynomiality constraint one easily ob-

tains quantized values of the charges q3, . . . , qL and evaluates the corresponding energy and

quasimomentum from

ε = i (ln Q(i s))′ − i (ln Q(−i s))′ , eiθ =
Q(i s)

Q(−i s)
. (3.7)

As usual, the cyclic symmetry of the single-trace operators requires eiθ = 1. The one-loop

anomalous dimension of Wilson operators are related to the chain energies ε by

∆γ(N) = g2 ε(N) + O(g4), (3.8)

where g2 = λ/(8π2) = g2
YM Nc/(8π2) is the scaled ’t Hooft coupling, fixed in the planar

Nc → ∞ limit. In the above expressions, ∆γ(N) = γ(N)−γ(0) is the subtracted anomalous

dimension vanishing at zero spin N = 0.

3.1 Twist-2, SUSY universality and the KLOV principle

As an example and for illustrative purposes, let us briefly review what happens in twist-

2. Solving the Baxter equation in the three sectors s = 1/2, 1, 3/2, i.e. for the scalar

(ϕ), gaugino (λ) and vector (A) channels, one immediately recovers the known one-loop

formulae

∆γϕ
L=2(N) = 4S1(N),

∆γλ
L=2(N) = 4S1(N + 1) − 4, (3.9)

∆γA
L=2(N) = 4S1(N + 2) − 6, (3.10)

– 5 –
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where S1(N) =
∑N

n=1
1
n is the N -th harmonic number.

These results express the well-known fact that all twist-2 quasipartonic operators are

in the same SUSY multiplet and their anomalous dimension is expressed by a universal

function with shifted arguments [17]. Taking into account γ(0) one has

γϕ
L=2(N) = γuniv(N), γλ

L=2(N) = γuniv(N + 1), γA
L=2(N) = γuniv(N + 2). (3.11)

These relations are a consequence of the unbroken superconformal symmetry and are ex-

pected to hold at all orders. The higher order (three loop) corrections to γuniv are available

due to the deep insight of Kotikov, Lipatov, Onishchenko and Velizhanin (KLOV) [12] (see

also [13]). Their prediction is based on what is now universally known as the maximum

transcendentality or KLOV principle.

Expanding the universal function γuniv(N) according to

γuniv(N) =
∑

n≥1

γ
(n)
univ(N) g2 n, (3.12)

the explicit result is [12]

γ
(1)
univ(N) = 4S1 , (3.13)

γ
(2)
univ(N) = −4

(
S3 + S−3 − 2S−2,1 + 2S1

(
S2 + S−2

))
,

γ
(3)
univ(N) = −8

(
2S−3 S2 − S5 − 2S−2 S3 − 3S−5 + 24S−2,1,1,1

+ 6
(
S−4,1 + S−3,2 + S−2,3

)
− 12

(
S−3,1,1 + S−2,1,2 + S−2,2,1

)

−
(
S2 + 2S2

1

)(
3S−3 + S3 − 2S−2,1

)
− S1

(
8S−4 + S2

−2

+ 4S2 S−2 + 2S2
2 + 3S4 − 12S−3,1 − 10S−2,2 + 16S−2,1,1

))
,

with all harmonic sums evaluated at argument N and nested sums defined recursively by

Sa(N) =

N∑

n=1

(sign a)n

na
, Sa1,a2,...(N) =

N∑

n=1

(sign a1)
n

na1
Sa2,...(n). (3.14)

Expressions eqs. (3.13) have been shown to be fully consistent with the long-range Bethe

Ansatz equations valid in the bosonic sl(2) sector [14] by checking them at many values of

the spin N . It must be emphasized that a direct proof of such expressions from the Bethe

equations is still missing beyond one-loop.

At more than 3 loops, wrapping problems forbid to predict the anomalous dimension

of twist-2 operators with finite spin [8]. Nevertheless, it is possible to predict from the

Bethe Ansatz the all-loop expansion of the scaling function f(g) defined by the large spin

limit

γuniv(N) = f(g) log N + O(1). (3.15)

At four loops, the analytical prediction reported in [31] is in full agreement with the

alternative (more conventional) calculations of [32, 33].

– 6 –
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3.2 Twist-3, universality classes and KLOV breaking

The same one-loop exercise at twist-3 gives, for even spin N ( a necessary condition to

select an unpaired ground state)

∆γϕ
L=3(N) = 4S1

(
N

2

)
,

∆γλ
L=3(N) = 4S1(N + 2) − 6, (3.16)

∆γA
L=3(N) = 4S1

(
N

2
+ 1

)
− 5 +

4

N + 4
.

The result for the scalar channel is rather well understood and its four-loop correction has

been recently computed in two independent papers [15, 8].

Apart from a constant shift related to γ(0), the anomalous dimension in the gaugino

channel is clearly related to the twist-2 universal anomalous dimension. This remarkable

degeneracy among different twist operators has been first studied in [34, 35]. Recently, it

has been proved that supersymmetry implies (at least) the three loop relation [16]

γλ
L=3(N) = γuniv(N + 2), N ∈ 2N. (3.17)

In the gauge sector, the above one-loop result is fully consistent with the analysys of

maximal helicity 3 gluon operators in QCD [26]. The dilatation operator is integrable and

its lowest eigenvalue is given by eq. (82) of [26]:

ε = 2S1

(
N

2
+ 2

)
+ 2S1

(
N

2
+ 1

)
+ 4 = (3.18)

= 4S1

(
N

2
+ 1

)
+

4

N + 4
+ 4. (3.19)

Apart from the constant, this is precisely the same combination appearing in γA
L=3. Also,

at one-loop this prediction is expected to agree with the N = 4 result, thus fixing γ(0).

We remark that, already this very simple one-loop analysis, reveals the following non-

trivial features of the twist-3 case

1. In twist-3 there are various universality classes of anomalous dimensions as a conse-

quence of a richer supermultiplet structure.

2. The twist-2 universality class is inherited in the gaugino sector.

3. In the gauge sector, the KLOV principle is violated at least in strict sense.

Items (1,2) are expected to hold at all orders being related to the superconformal symmetry.

Concerning (3), it would be quite interesting to explore what happens beyond the one-loop

level. This is a somewhat unexplored territory to which we devote the remaining part of

this paper.
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4. Tripleton decomposition and twist-3 anomalous dimensions

The elementary fields of N = 4 SYM are (in a chiral basis and omitting the fermion su(4)

index)

ϕ, , λα, λ
α̇
, Fαβ , F α̇β̇. (4.1)

Together with their derivatives, they belong to an irreducible representation of the super-

conformal algebra, the singleton VF .

From the superconformal properties of tensor products V ⊗L
F we can understand sev-

eral general features of the twist-3 anomalous dimensions. The decomposition of V ⊗L
F in

irreducible superconformal representations is nicely discussed in [36] exploiting the higher

spin symmetry hs(2, 2|4) of the free theory.

As a warm-up, let us reconsider the twist-2 case. We label a superconformal multiplet

V by the quantum numbers of its superconformal primary state

V∆,B

[j,j][λ1,λ2,λ3]
, (4.2)

where ∆ is the conformal scaling dimension, B the hypercharge [37], [j, j] the chiral and

antichiral su(2) ⊕ su(2) Lorentz spins, and [λ1, λ2, λ3] the Dynkin labels of the su(4) R-

symmetry algebra.

In standard notation, the symmetric product of two singleton representations decom-

poses as

(VF ⊗ VF )S =
∞⊕

n=0

V2n, (4.3)

where Vn is an abbreviation for the semishort current multiplet

Vn ≡ Vn,0
[ n
2
−1, n

2
−1][0,0,0]. (4.4)

The multiplets V2n contain, among others, all twist-2 operators with increasing spin. The

anomalous dimension of the multiplet is proportional to the harmonic number S1(2n), at

one-loop, and is nothing but the universal anomalous dimension γ
(1)
univ.

The decomposition in twist-3 is much more complicated. Following [36], the maximally

symmetric case reads

(VF ⊗ VF ⊗ VF )S =

∞⊕

n=0
k∈Z

cn [V2k,n + V2k+1,n+3] , (4.5)

where cn = 1+[n/6]−δn,1 mod 6. The various modules appearing in the decomposition have

quite different properties and describe states in various subsectors.

For even n, the one-loop lowest anomalous dimension in Vm,n is associated with an

unpaired state and has been guessed in [36] to be

γm,n =
λ

8π2

[
2S1

(
m

2
− 1

2

)
+ 2S1

(
m +

n

2

)
+ 2S1

(m

2
+

n

2

)
− 2S1

(
−1

2

)]
. (4.6)

– 8 –
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Taking m = 2 and n = N we find

γ2,N =
λ

8π2

[
2S1

(
N

2
+ 1

)
+ 2S1

(
N

2
+ 2

)
+ 4

]
, (4.7)

where we have used the representation S1(N) = γE + ψ(N + 1) in terms of the digamma

function ψ(z) = (log Γ(z))′ which satisfies

ψ

(
2n + 1

2

)
− ψ

(
2n − 1

2

)
=

2

2n − 1
, n ∈ N. (4.8)

The expression eq. (4.7) reproduces the three gluon one-loop anomalous dimension in

eq. (3.16). The reason of the agreement is that the module V2,N describes states in a

su(1, 2) subsector which are covariant derivatives of the self-dual field strength [36]. In-

deed, the associated superconformal primary state Φgauge is built with L = 3 fields and its

quantum numbers can be read from the relation

V2,N = VN+4,1

[ N
2

+1, N
2

][0,0,0]
. (4.9)

Using the oscillator representation discussed in [38], one checks that, after a Lorentz rota-

tion, Φgauge has the schematic form

Φgauge = Tr(DN
11 λ11 λ11 ϕ34 + · · · ), (4.10)

where λα a, α = 1, 2, a = 1, . . . , 4 are the Weyl fermions and ϕab = −ϕba, a, b = 1, . . . , 4,

the six real scalars transforming in the 4 and 6 of su(4) respectively. Applying the four

supersymmetry charges Qa
α with a = 1, 2, 3, 4 and α = 1, we reach states of the form

Q1
1 Q2

1 Q3
1 Q4

1 Φgauge = Tr(DN
11 F11 F11 F11 + · · · ) + · · · . (4.11)

In light-cone coordinates, D11 = D+ and F11 is the holomorphic combination of F+µ
⊥

with definite helicity. Thus, if we want to discuss the multiloop anomalous dimension of

twist-3 maximal helicity quasi-partonic operators, the correct context in the full psu(2, 2|4)
theory is precisely module V2,N for even N .

As a check, we illustrate in the next section the useful exercise of recovering the one-loop

equivalence with the XXX− 3

2

chain. Next, we shall study the solution of the long-range

Bethe equations for Φgauge in order to obtain higher loop predictions.

5. One-loop reduction to the XXX
−

3

2

spin chain

As discussed in [39], the Bethe Ansatz equations for the full N = 4 theory with (complex-

ified) algebra sl(4|4) must have a rather universal structure discussed in [40] for bosonic

symmetry algebras and in [41] in the fermionic case.

This general structure may be written as follows. Suppose that the symmetry algebra

has rank r. Let us look for a state associated with K = K1 + · · ·+Kr Bethe roots denoted

– 9 –
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by ui, i = 1, . . . ,K. For each root we specify which of the r simple roots is excited by

kj = 1, . . . , r. The Bethe equations can be written in the compact form

(
uj + i

2Vkj

uj − i
2Vkj

)L

=
K∏

ℓ=1
ℓ 6=j

uj − uℓ + i
2Mkj ,kℓ

uj − uℓ − i
2Mkj ,kℓ

. (5.1)

Here, Mkℓ is the Cartan matrix of the algebra and Vk are the Dynkin labels of the spin

representation carried by each site of the chain. Furthermore, we still consider a cyclic spin

chain with zero total momentum and this gives the additional constraint

1 =

K∏

j=1

uj + i
2Vkj

uj − i
2Vkj

. (5.2)

The energy of a configuration of roots that satisfies the Bethe equations and constraint is

now given, apart from R-matrix ambiguities (encoded in the constant c and the choice of

sign) by

E = cL ±
K∑

j=1

(
i

uj + i
2Vkj

− i

uj − i
2Vkj

)
. (5.3)

In the particular case of a psu(2, 2|4)-invariant theory, we need to specify the Cartan

matrix, determined by the Dynkin diagram which is not unique for superalgebras, as well

as the Dynkin labels of the spin representation corresponding to the singleton module VF .

In the context of N = 4 SYM, a convenient choice is the Beauty form

n n n n
+1

n n n¡@ ¡@
(5.4)

On top of the Dynkin diagram we have indicated the Dynkin labels of the spin rep-

resentation. We write the Cartan matrix corresponding to this choice of Dynkin diagram

and the representation vector as

M =




−2 +1

+1 −1

−1 +2 −1

−1 +2 −1

−1 +2 −1

−1 +1

+1 −2




, V =




0

0

0

1

0

0

0




. (5.5)

The energy corresponding to a solution to the Bethe equations is

E =
K∑

j=1

(
i

uj + i
2Vkj

− i

uj − i
2Vkj

)
=

K∑

j=1

Vkj

u2
j + 1

4 V 2
kj

. (5.6)

Given the quantum number of the superconformal state we are interested in, one can

compute the excitation numbers Ki according to the detailed expressions reported in [39].

– 10 –
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5.1 Duality transformations

It is convenient to define the following graphical notation to denote bosonic or fermionic

simple roots of a (modified) superalgebra of sl(n|m) type as follows.

There is a single type of fermionic nodes

(F )

Mj,j−1 = +1

n¡@

Vj

Mj,j = 0 Mj,j+1 = −1

(5.7)

Eventually, it can appear in flipped form

(F ′)

Mj,j−1 = −1

n¡@

Vj

Mj,j = 0 Mj,j+1 = +1

(5.8)

There are two types of bosonic nodes

(B)

Mj,j−1 = −1

n
Vj

Mj,j = 2 Mj,j+1 = −1

(5.9)

(B)

Mj,j−1 = +1

n
Vj

Mj,j = −2 Mj,j+1 = +1

(5.10)

In the Beauty form, the Dynkin diagram of psu(2, 2|4) is

n n¡@ n n
+1

n n¡@ n (5.11)

where we have added external lines required to assess nodes 1, 7 as bosonic.

Now, let us consider a fermionic node with K0 Bethe roots and neighbouring nodes

with K± Bethe roots, the sign being that of the associated off diagonal Cartan matrix

element

K+

n¡@

V 0

K0 K−

(5.12)

The neighbouring nodes can be bosonic or fermionic. It is possible to prove duality relations

that allows to write the Bethe equations in equivalent forms related to modified Dynkin

diagrams. Each dualization flips the two lines entering a fermionic node and changes its

excitation number K0 → K̃0 as well as the weights of the three involved nodes. The

– 11 –
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precise rules are proved and discussed in [42]. They can be summarized in the following

two duality transformations

Dualization I: V 0 6= 0, K̃0 = L + K+ + K− − K0 − 1

n
V +

K+

n¡@

V 0

K0

n
V −

K−

(5.13)

⇓

n
V + ∧ (V 0 − 1)

K+

n¡@

−V 0

K̃0

n
V − ∧ (V 0 + 1)

K−

(5.14)

The wedge product is discussed in the previous papers. In the following, we shall need

the following two simple cases only

0 ∧ N = N, N ∧ (−N) = 0. (5.15)

Dualization II: V 0 = 0, K̃0 = K+ + K− − K0 − 1

n
V +

K+

n¡@

0

K0

n
V −

K−

(5.16)

⇓ (5.17)

n
V +

K+

n¡@

0

K̃0

n
V −

K−

(5.18)

5.2 Application to the Bethe equations for Φgauge

The superconformal primary Φgauge has the following excitation numbers

n n¡@
N + 2

n

N + 3

n
+1

N + 4

n

N + 2

n¡@
N

n (5.19)

Dualizing at 2

n¡@ n¡@ n¡@
N + 3

n
+1

N + 4

n

N + 2

n¡@
N

n (5.20)
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Dualizing at 3

n¡@ n n¡@ n¡@

+1

N + 4

n

N + 2

n¡@
N

n (5.21)

Dualizing at 4, and working at twist-3, L = 3, we obtain

K̃4 = L + K3 + K5 − K4 − 1 = 3 + (N + 2) − (N + 4) − 1 = 0 ! (5.22)

n¡@ n n n¡@

−1

n¡@

+2

N + 2

n¡@
N

n (5.23)

Dualizing at 5, we find

K̃5 = L + K4 + K6 − K5 − 1 = 3 + N − (N + 2) − 1 = 0 ! (5.24)

n¡@ n n n n¡@

−2

n
+3

N

n (5.25)

which are the Bethe equations for XXX−s with s = 3
2 .

6. Perturbative solution of the long-range Bethe equations for Φgauge

The long-range (asymptotic) Bethe equations for the full psu(2, 2|4) theory have been pro-

posed in [5]. Unfortunately, they do not have the same large set of duality transformations

that we have discussed for the one-loop equations. Therefore, it is non trivial to repeat

the reduction to a simple XXX− 3

2

chain. However, this is not our main aim. Instead,

we want to obtain a perturbative expansion of the solution associated to the state Φgauge

which starts from the one-loop solution as an input. This is relatively easy, as we now

explain. In principle, there can be better methods, but the one we present is rather simple

and makes the job.

First, we observe that the long-range Bethe equations have been proposed in 4 equiv-

alent forms. The most convenient one has the following degree assignment

n¡@ n n¡@
N + 3

n
+1

N + 4

n¡@
N + 2

n

1

n¡@ (6.1)

The excitation numbers are those of Φgauge and are obtained from the Beauty form after

dualization of nodes 2, 5 followed by dualization of nodes 1, 7. It can be checked that the

single root at node 6 vanishes by symmetry.
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There are 3N + 10 roots (actually one of them is identically zero) and the solution of

the Bethe equations is non trivial even at one loop. However, we can make a very useful

observation. Along a chain of one-loop duality we can easily backtrace the dualization of

the Bethe roots. This means that we can start from the N Bethe roots of the XXX−3/2

chain and compute backward the 3N + 10 roots in the above diagram. This can be done

with arbitrarily high precision. The XXX−3/2 roots can be found by solving the Baxter

equation and this amounts to finding the roots of a single polynomial. Each backstep also

requires the determination of the roots of a polynomial. All this numerical tasks can be

done robustly at high precision.

Once, we have the one-loop solution of the above Bethe equation, it is straightforward

to evaluate their perturbative expansion with the long-range all-loop deformed version of

the equations. The resulting anomalous dimension has rational coefficients in its loop

expansions. These rational numbers can be easily and unambiguously identified according

to the methods discussed in [15, 8].

7. Three loop anomalous dimensions in the gauge sector

We believe that the above procedure can be carried out safely at least up to the three loop

level. We do not know if wrapping terms appear at four loops and leave this important

issue for future investigations. Expanding the anomalous dimension ( we omit L = 3 and

the label Aµ)

γ(N) =

∞∑

k=1

g2 k γk(N), (7.1)

we have to reproduce the rational values γk(N), k = 1, 2, 3, by a suitable closed analytical

formula. Of course this is not a well-posed problem. In the case of twist-2 operators or

twist-3 scalar and gaugino channels, it has been possible to accomplish the task resorting

to the KLOV principle. Here, already at one-loop, the KLOV principle is violated !

Inspired by other similar QCD calculations [44], we have made the following Ansatz

which generalizes the one-loop result

γk(N) =

2 k+1∑

p=0

p∑

q=0

∑

Fq∈Hq

cp,Fq

Fq(n)

(n + 1)p−q
, n =

N

2
+ 1, (7.2)

where Fq ∈ Hq are linearly independent products of (nested) harmonic sums with positive

indices and total transcendentality q all evaluated at argument n. The terms with p = 2 k+1

and q = p are the maximum transcendentality ones. The other terms have subleading

transcendentality.

The unknown coefficients in the above Ansatz can be (largely over)determined by com-

puting γi(N) for a large set of spin values. In the end, we arrived at the following remarkable

expressions of the two loop anomalous dimension (we rewrite also γ1 for completeness)

γ1 = 4S1 +
2

n + 1
+ 4,

γ2 = −2S3 − 4S1 S2 −
2S2

n + 1
− 2S1

(n + 1)2
− 2

(n + 1)3
− 4S2 −

2

(n + 1)2
− 8, (7.3)
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and of the three loop contribution

γ3 = 5S5 + 6S2 S3 − 4S2,3 + 4S4,1 − 8S3,1,1 (7.4)

+
(
4S2

2 + 2S4 + 8S3,1

)
S1

+
−S4 + 4S2,2 + 4S3,1

n + 1
+

4S1 S2 + S3

(n + 1)2
+

2S2
1 + 3S2

(n + 1)3

+
6S1

(n + 1)4
+

4

(n + 1)5
− 2S4 + 8S2,2 + 8S3,1

+
4S2

(n + 1)2
+

4S1

(n + 1)3
+

6

(n + 1)4
+ 8S2 + 32,

where n = N
2 + 1 and in all harmonic sums Sa ≡ Sa(n).

One can identify several pieces which also appeared in the scalar sector. The additional

terms have a non-trivial structure that shall be further discussed in [43]. To give an

example, one immediately notice that it is possible to recast the two loop anomalous

dimension in the following compact and symmetric form

γ1 = 2S1(n) + 2S1(n + 1) + 4, (7.5)

γ2 = −2S3(n) − 2 [S1(n)S2(n) + S1(n + 1)S2(n + 1)]

−2 [S2(n) + S2(n + 1)] − 8.

As a non trivial check of eqs. (7.3), (7.4), it is easy to check that the correct three loop

scaling function is reproduced by the leading large N terms. Expanding f(g) in eq. (3.15)

f(g) =

∞∑

n=1

g2 nfn, (7.6)

we find the coefficients fn from the asymptotic values of the maximal transcendentality

harmonic combinations multiplying S1 ∼ log N . These are

f1 = 4, (7.7)

f2 = −4S2(∞), (7.8)

f3 = 4S2
2(∞) + 2S4(∞) + 8S3,1(∞).

Using the exact values

S2(∞) = ζ2 =
π2

6
, S4(∞) = ζ4 =

π4

90
, S3,1(∞) =

π4

72
, (7.9)

we recover

f(g) = 4 g2 − 2π2

3
g4 +

11π4

45
g6 + · · · . (7.10)

8. A further non-trivial test: MVV-like relations

As a further test of the proposed three loop anomalous dimension, one can check the validity

of generalized Moch-Vermaseren-Vogt (MVV) relations [18, 19]. These are discussed in full
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details in the recent papers [29, 11]. One assumes that γ(N) obeys at all orders the non-

linear equation

γ(s) = P

(
N +

1

2
γ(N)

)
, (8.1)

with a function P admitting the following reciprocity respecting or parity respecting expan-

sion for large argument

P (N) = A′ log J2(N) +

∞∑

n=0

n∑

m=0

B′
n,m

logm J2(N)

(J2(N))n
, (8.2)

where the collinear Casimir is

J2(N) = (N + Ls − 1)(N + Ls), (s =
3

2
, L = 3). (8.3)

If we now expand γ(N) at large N according to

γ(N) = A log N̂ +

∞∑

n=0

n∑

m=0

Bn,m
logm N̂

Nn
, (8.4)

N̂ =
1

2
N eγE , (8.5)

we can eliminate the coefficients A′ and B′
n,m and find all order relations among A and

Bn,m. The first MVV-like relations are

B1,1 =
1

2
A2, (8.6)

B1,0 = A

(
4 +

1

2
B0,0

)
.

To check them, we compute the large N expansion of γ1,2,3. It is

γ1 = 4 log N̂ + 4 +
16

N
− 100

3N2
+ · · · , (8.7)

γ2 = −4 ζ2 log N̂ − 2 ζ3 − 4 ζ2 − 8

+
8

N
(log N̂ − 2 ζ2 + 1) +

4

N2

(
−8 log N̂ +

25

3
ζ2 + 1

)
+ · · ·

γ3 =
44

5
ζ2
2 log N̂ − ζ5 + 2 ζ3 ζ5 +

44

5
ζ2
2 + 8 ζ2 + 32

− 4

5N
(20 ζ2 log N̂ − 44 ζ2

2 + 5 ζ3 + 20 ζ2 + 20)

− 4

3N2
(6 log2 N̂ − 48 ζ2 log N̂ + 55 ζ2

2 − 12 ζ3 + 3 ζ2 − 45) + · · · .

Hence, the above coefficients of the expansion are

A = 4 g2 − 4 ζ2 g4 +
44

5
ζ2
2 g6 + · · · , (8.8)

B0,0 = 4 g2 − (8 + 4 ζ2 + 2 ζ3) g4 + · · · , (8.9)

B1,1 = 8 g4 − 16 ζ2 g6 + · · · , (8.10)

B1,0 = 16 g2 + 8 (1 − 2 ζ2) g4 − 4

5
(−44 ζ2

2 + 20 ζ2 + 5 ζ3 + 20) g6 + · · · , (8.11)
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and one checks immediately that eqs. (8.6) hold. Of course, A is nothing but the scaling

function f(g).

A detailed analysis of the function P as well as a rigorous proof of its reciprocity

properties will appear in a forthcoming paper [43].

9. Conclusions

The main result of this paper is the three loop expression of the anomalous dimension

γ(N) of finite spin N maximal helicity twist-3 gluon operators in psu(2, 2|4) reported in

eqs. (7.3), (7.4). We have obtained them, by solving perturbatively the long-range Bethe

equations and resumming the rational expansion of γ(N) assuming the Ansatz eq. (7.2).

From the technical point of view, this result exploits the one-loop equivalence of this

sector with the integrable XXX−3/2 spin chain, as follows from a sequence of dualizations

of the associated Bethe equations. Beyond one-loop, the available duality relations are

quite less powerful and should be extended, at least in principle, as discussed in [42]. It

would be nice to obtain a reduced set of asymptotic multi-loop Bethe equations of minimal

rank. This interesting task is an open issue that is left for future investigations.

A more interesting topic concerns the physics encoded in eqs. (7.3), (7.4). From this

point of view, the fact that in the infinite spin limit we recover the correct cusp anomalous

dimension is a mere check definitely not surprising, but reassuring. On the other hand,

the generalized Moch-Vermaseren-Vogt relations discussed in section (8) are actually non

trivial. They suggest hidden reciprocity relations governing the large spin expansion of

γ(N). They hold true for all known results about twist-2 anomalous dimensions in QCD

and N = 4 SYM (even at strong coupling) [9, 10]. An easy calculation based on the results

of [16] confirms that they are satisfied also in the twist-3 gaugino channel, exploiting the

relation with the twist-2 universal anomalous dimension. Finally, they have been recently

checked at four loops in the case of twist-3 bosonic sl(2) operators in N = 4 SYM [11].

It would certainly be interesting to prove them from first principles at the level of Bethe

Ansatz equations.
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